INORGANIC COMPOUNDS

Acta Cryst. (1994). C50, 3-4

$\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Cl}_{2}$ - a Revision of Crystal Symmetry

G. Giester

Institut für Mineralogie und Kristallographie. Universität Wien, Dr. Karl Lueger-Ring I, A-1010 Vienna, Austria
(Received 19 January 1993; accepted 14 June 1993)

Abstract

A redetermination of the crystal structure of the tellurium oxochloride hexatellurium dichloride undecaoxide, $\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Cl}_{2}$, is described. The title compound is isostructural with $\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Br}_{2}$ and is correctly described in the space group $\mathrm{Ccmm} . \mathrm{Te}^{\mathrm{IV}}$ atoms are coordinated to four or three O atoms with average $\mathrm{Te}-\mathrm{O}$ distances of 2.01 and $1.91 \AA$, respectively. $\mathrm{Te}-\mathrm{Cl}$ distances are in the range $2.99-3.45 \AA$. The structure consists of infinite $\left(\mathrm{Te}_{6} \mathrm{O}_{11}\right)^{2+}$ chains parallel to [001].

Comment

Khodadad (1965) and Khodadad, Laruelle \& Etienne (1965) reported the synthesis of $\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Cl}_{2}$ and proposed the orthorhombic space group Ccmm on the basis of Debye-Scherrer photographs. A structure determination of $\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Br}_{2}$ (Khodadad \& Rodier, 1977) also led to the space group Ccmm and the authors suggested, because of similar cell dimensions, that it was isostructural with the oxochloride compound. Contrarily, Abriel (1981) investigated $\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Cl}_{2}$ and described it with monoclinic symmetry. This structure determination was carried out with single crystals on a two-circle diffractometer. In spite of the fact that Guinier film data could be indexed orthorhombically and that the crystal structure resembles that of $\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Br}_{2}$, the author persisted in the lower symmetry based on Weissenberg photographs. The present study aimed to ensure a definite choice of the space group.

Abriel (1981) described $\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Cl}_{2}$ in space group $P 112_{1} / m$ with $a=6.844$ (4),$\quad b=6.800$ (4),$\quad c=$ 15.227 (9) \AA and $\gamma=120.19$, indicating a pseudohexagonal cell, with transformed, slight deviations from orthogonal metrics. A transformation of Abriel's monoclinic cell ($-\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{~b}},-\overrightarrow{\mathrm{c}}$) leads to a $=6.844, b=11.755, c=15.227 \AA, \alpha=\beta=90.0$ and $\gamma=90.024^{\circ}$.

In the present redetermination, a conventional reduced monoclinic unit cell in $P 12_{1} / \mathrm{ml}$ was chosen initially, with $a=6.797$ (2),$\quad b=15.228$ (3), $\quad c=$ 6.798 (2) \AA and $\beta=119.56(1)^{\circ}$, which transforms ($\overrightarrow{\mathrm{a}}$ $+\overrightarrow{\mathrm{c}}, \overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{c}},-\overrightarrow{\mathrm{b}}$) to $a=6.843$ (2), $b=11.748$ (3), $c=$ 15.228 (3) $\AA, \alpha=\beta=90.0$ and $\gamma=90.006$ (10) , and turns out to be orthogonal, at least within the accuracy of measurements. In order not to overlook measured intensities that might contradict an orthorhombic space group, the crystal structure refinements were carried out in both space groups. In the monoclinic refinement (92 variables, $R=0.028$), bond distances and angles of all coordination polyhedra, related in Ccmm , proved to be equal within one standard deviation. $\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Cl}_{2}$ seems, therefore, to be correctly described in Ccmm and is obviously isostructural with $\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Br}_{2}$.

Recently, Popolitov, Telegenov \& Bondareva (1992) refined the lattice parameters of $\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Br}_{2}$ with a four-circle diffractometer. Stimulated by the work of Abriel, as the authors note, they believed in a monoclinic metric and assigned the monoclinic space group $P 112 / m$ to $\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Br}_{2}$ with $a=$ 6.8354 (9), $b=6.8347$ (7), $c=15.5073$ (20) $\AA, \alpha=\beta$ $=90.0$ and $\gamma=119.4888$ (83). Unfortunately, they too failed to realize the higher symmetry. As expected, a simple transformation $(\vec{a}+\vec{b},-\vec{a}+\vec{b}, \vec{c})$

Fig. 1. Crystal structure of $\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Cl}_{2}$ in a projection parallel to [100]. The figure was drawn using the program ATOMS (Dowty, 1993). The Cl atoms are indicated by large circles, the Te atoms by small circles and the $\mathrm{Te}-\mathrm{Cl}$ bonds by sticks.
shows that the correct unit-cell parameters of tellurium oxobromide are $a=6.888, b=11.808, c=$ $15.507 \AA, \alpha=\beta=90.0$ and $\gamma=90.007^{\circ}$ (i.e. equal to 90.0° within the limits of error) and the true space group is Ccmm .

Fig. 1 illustrates the atomic arrangement in a projection parallel to [100]. The $\mathrm{Te}^{\mathrm{IV}}$ atoms are bound to O atoms ($1.89-2.18 \AA$) and additionally to Cl atoms with $\mathrm{Te}-\mathrm{Cl}$ distances ranging from 2.99 to $3.45 \AA$. $\mathrm{Te}(1) \mathrm{O}_{4} \psi$-trigonal bipyramids share a common edge forming $\mathrm{Te}\left(\mathrm{I}_{2} \mathrm{O}_{6}\right.$ units, which in turn share corners to build $\mathrm{Te}(1)_{4} \mathrm{O}_{10}$ rings. Furthermore, each two $\mathrm{Te}(2) \mathrm{O}_{3} \psi$-tetrahedral groups share a common corner. Both these structural parts, $\mathrm{Te}(1)_{4} \mathrm{O}_{10}$ and $\mathrm{Te}(2)_{2} \mathrm{O}_{5}$, are alternately corner-linked building infinite chains parallel to [001]. The Cl atoms are coordinated to six Te atoms, forming a distorted trigonal prism.

The $\mathrm{Te}-\mathrm{O}$ polyhedra in $\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Cl}_{2}$ and $\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Br}_{2}$ have remarkably similar geometry, while the differences refer, of course, to bonding to the respective halogen atoms.

Experimental

Crystal data
$\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Cl}_{2}$
$M_{r}=1012.5$
Orthorhombic
Ccmm
$a=6.843$ (2) \AA
$b=11.748$ (3) \AA
$c=15.228$ (3) \AA
$V=1224.2 \AA^{3}$
$Z=4$
$D_{x}=5.494 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 48 reflections
$\theta=21-24^{\circ}$
$\mu=13.628 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Parallelepiped
$0.14 \times 0.07 \times 0.05 \mathrm{~mm}$
Yellow

Data collection

Stoe AED-2 diffractometer
20/ ω scans
Absorption correction:
empirical
$T_{\text {min }}=0.29, T_{\text {max }}=0.39$
7163 measured reflections
1439 independent reflections 1267 observed reflections
$\left[F_{o}>3 \sigma\left(F_{o}\right)\right]$

Refinement

Refinement on F
$R=0.036$
$\omega R=0.036$
$S=2.89$
1267 reflections
54 parameters
$w=1 /\left[\sigma\left(F_{o}\right)\right]^{2}$
$(\Delta / \sigma)_{\text {max }}<0.01$
$\Delta \rho_{\text {max }}=2.9 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-3.9 \mathrm{e}^{-3}$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$B_{\mathrm{eq}}=$			
$\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$			
x	y	z	
$0.36751(5)$	$0.15605(3)$	$0.08765(2)$	$0.92(1)$
$0.92198(6)$	0.0	$0.13947(4)$	$0.85(1)$
$0.1982(3)$	$0.3352(2)$	0.25	$1.60(4)$
$0.4223(8)$	0.0	0.1157	$1.32(9)$
$0.1644(5)$	$0.3485(4)$	$0.0361(3)$	$1.14(7)$
$0.0770(6)$	$0.1198(4)$	$0.0941(3)$	$1.36(8)$
$0.0620(3)$	0.0	0.25	$1.43(15)$

Table 2. Interatomic bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with interpolyhedral $\mathrm{O} \ldots \mathrm{O}$ distances (\AA) given in square

brackets			
$\mathrm{Te} 1-\mathrm{O} 1$	$1.919(1)$	$\mathrm{Te} 1-\mathrm{Cl}$	$3.448(1)$
$\mathrm{Te} 1-\mathrm{O} 2$	$1.898(4)$	$\mathrm{Te} 2-\mathrm{O} 3(\times 2)$	$1.893(4)$
$\mathrm{Te} 1-\mathrm{O} 2$	$2.178(3)$	$\mathrm{Te} 2-\mathrm{O} 4$	$1.937(3)$
$\mathrm{Te} 1-\mathrm{O} 3$	$2.035(3)$	$\mathrm{Te} 2-\mathrm{Cl}(\times 2)$	$2.988(1)$
$\mathrm{Tel}-\mathrm{Cl}$	$3.353(1)$		
	$\mathrm{O} 1-\mathrm{Te} 1-\mathrm{O} 2$	$82.8(2)[2.717(6)]$	
	$\mathrm{O} 1-\mathrm{Te} 1-\mathrm{O} 2$	$102.5(3)[2.978(7)]$	
	$\mathrm{O} 1-\mathrm{Te} 1-\mathrm{O} 3$	$88.9(2)[2.770(6)]$	
	$\mathrm{O} 2-\mathrm{Te} 1-\mathrm{O} 2$	$75.5(2)[2.504(7)]$	
	$\mathrm{O} 2-\mathrm{Te} 1-\mathrm{O} 3$	$86.0(2)[2.684(6)]$	
	$\mathrm{O} 2-\mathrm{Te} 1-\mathrm{O} 3$	$157.4(4)[4.132(5)]$	
	$\mathrm{O} 3-\mathrm{Te} 2-\mathrm{O} 3$	$96.1(3)[2.817(9)]$	
	$\mathrm{O} 3-\mathrm{Te} 2-\mathrm{O} 4(\times 2)$	$92.3(2)[2.762(4)]$	

$\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Cl}_{2}$ was prepared in Teflon-lined steel vessels of $50 \mathrm{~cm}^{3}$ capacity. A mixture of $\mathrm{TeO}_{2}, \mathrm{HCl}$ and $\mathrm{H}_{2} \mathrm{O}$ was heated to 500 K , kept at that temperature for one week and then slowly cooled to room temperature. The crystals obtained formed clusters with individual crystal sizes up to a few tenths of a mm.

Initial atomic coordinates were taken from those of $\mathrm{Te}_{6} \mathrm{O}_{12} \mathrm{Br}_{2}$ (Khodadad \& Rodier, 1977). Full-matrix least-squares refinement was performed with anisotropic thermal parameters for all atoms.

The author thanks all colleagues who read the manuscript critically.

Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71409 (9 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: SH1049]

References

Abriel, W. (1981). Z. Naturforsch. Teil B, 36, 405-409.
Dowty, E. (1993). ATOMS. Version 2.3. Shape Software, Kingsport, TN, USA.
Khodadad, P. (1965). Bull. Soc. Chim. Fr. pp. 468-470.
Khodadad, P., Laruelle, P. \& Etienne, J. (1965). Bull. Soc. Chim. Fr. pp. 470-471.
Khodadad, P. \& Rodier, N. (1977). Bull. Soc. Chim. Fr. 3-4, 251-253.
Popolitov, V. I., Telegenov, A. A. \& Bondareva, O. S. (1992). Sov. Phys. Crystallogr. 37(4), 537-539.
Stoe \& Cie (1984). STRUCSY. Structure System Program Package. Stoe \& Cie, Darmstadt, Germany.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

